

Developed By P-I Brånemark

SIMPLE EXPERIENCE FOR EXCEPTIONAL OUTCOMES Enhanced Biological Metrics to unlock immediate replacement potential

The P-I Implant Systems were developed by Professor Per-Ingvar Brånemark, the Osseointegration pioneer, jointly with scientists and the P-I Research & Development team in renowned universities to meet the modern implant dentistry demands.

In 2012, Ospol AB Sweden was acquired, and key technologies were integrated in the P-I solutions.

With the human biology, long-term expertise, clinical and scientific evidences as a foundation, our main objective is to support you in patient-focused treatments by providing Implant Systems represented by: Simplification • High Performance • Safety and Longevity

MT-F is the Next Generation System, a result of the P-I Brånemark fundamentals evolutionized by outstanding Biological Metrics and Simplicity.

Contents

	MT-F Uniqueness	05
	P-I Technologies	
	MT Interface	08
	OSPOL Surface	12
	Kit, Conical Drills & Insertion Driver	16
	MT-F Implants	22
	Components	
	Soft Tissue Healing	25
	Conical Abutment	27
	Abutment Cemented Cylinder	29
	Contour & Esthetic Abutments	31
	Cylinder over Implant	33
	Overdenture	34
	D DIGITAL	35
	Kit & Instruments	37
(Guided Surgery	41
·	Resonance Frequency Analysis	46
	Surgical Sequence	47
	Recommended Torques	48
	Implant Packaging	50
	LifeTime Guarantee	51

Consult Instructions for Use. Some products might not be available in your region. Images are for illustrative purposes only. Measurements in millimeters (A = diameter b = beight. This Securit Culture is in the first securit of the securit Measurements in millimeters. \emptyset = diameter, h = height. This Smart Guide contains data from internal files including sponsored and independent studies. For more information, please see www.pibranemark.com and exclusive.pibranemark.com

Adaptive bone contact

Multiple transitions • Interpolated core

Less bone displacement

In all bone densities

Less Trauma • Site Engagement

Cutting threads • Pronounced depth in all sections

The multiplicity of interpolated core transitions associated with the P-I Conical Drills site preparation, and the gradual evolution of the pronounced depth cutting threads, are responsible for a gentle implant-to-osteotomy engagement in all sections independently.

These unique geometrical combinations provide greater initial contact area with significantly less bone displacement and compression enhancing the Biological Metrics.

Less compression • Progressive torque • Greater area

MT-F displaces significantly less bone volume and achieves similar or higher Insertion Torque Value in all bone densities, exhibiting greater area in comparison to the leading competitive tapered-active implants of similar dimensions. Data on file.

Enhanced Biological Metrics

企 ISQ

Biological Metrics

High initial and secondary Implant Stability Quotient [ISQ] measurements by Resonance Frequency Analysis [RFA] in association with sufficient Insertion Torque Value [ITV] and low rotational micro-mobility, indicated by the proportional Removal Torque [RTQ%] to the obtained [ITV], are relevant Biological Metrics and critical success factors for the prosthetic rehabilitation of patients with implants in post extraction, healed sites, low density bone and in combination with tissues regeneration techniques.

The P-I expertise

Our expertise related to [ISQ] using [RFA] micromovement measurements to clinically monitor Osseointegration and to determine when to load implants, originates from the acquisition of Ospol AB in 2012.

Ospol AB and Osstell AB were sister companies established in Sweden and developers of an Implant System and [RFA] measurement technologies, respectively. The Ospol AB developments of the last 20 years are comprised in the P-I Implant Systems and the newest technologies are present in The Next Generation • MT-F System.

Increased coronal space Slightly inward flange

Cortical stability Micro Patterns

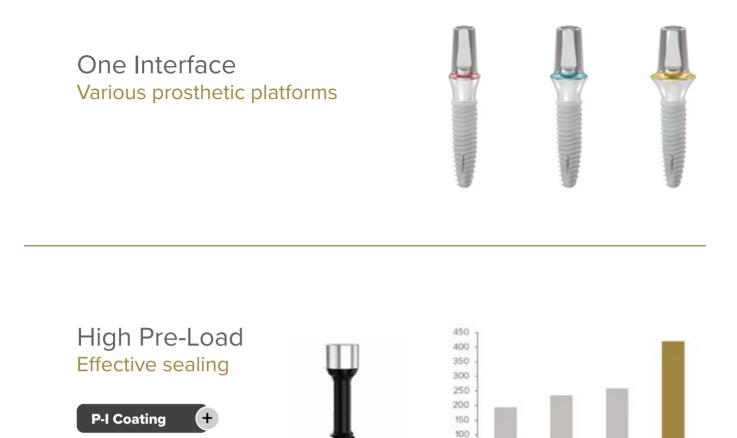
Adaptive	bone	contact
Interpolated	d core ti	ransitions

Gradual	thread	evolution	
Pronounce	ed depth	in all section	ns

Early engagement Gentle cutting • Dual thread

Axial insertion control Biological Width positioning

Peri-implant tissue preservation


• MT Interface

In clinical use for 15+ years • Superior biomechanics • Double Sealing

The P-I Morse Taper is an original technology. Highlighting 8.5° x 2 conical indexed, 3mm long, the P-I MT Interface offers a high torsional yield and fatigue strength as compared to other leading systems and was even adopted by a global leader. The MT-F Ø 3.3 Implant can withstand static load of approximately 600N. Data on file.

The high-preload Double Sealing mechanism has easy prosthetic reversibility, seals the Abutment on the MT Interface and the MT Screw on the Abutment, stabilizing the system, minimizing micromovement and microleakage in comparison to certain leading systems under simulated occlusal stress. The Double Sealing is an important hypothesis for the clinical consideration of MT-F Implant placement observing Biological Width principles.

50 0 N

Titanium

Easy reversibility Low stress to peri-implant tissues

Competitor

Coating

P-I

Coating

P-I


Optimized + Coating

Sealing starts at provisionalization

P-I Coating+ is a biocompatible layer that reduces friction and, combined with the MT Screw optimized geometry, provides a substantially higher and homogeneous pre-load, clamping, in comparison to titanium screws and the leading coating at the same tightening torque of 25 Ncm. Data on file. MT Retriever is used to cancel the morse sealing and safely remove Abutments.

Prosthetic Overview

Strong Osseointegration REDUCTION OF BIOFILM INFECTIONS

Improved bone response

In comparison to rougher oxidized and blasted surfaces

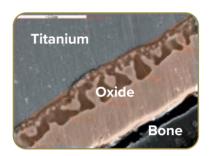
Less bacterial adhesion

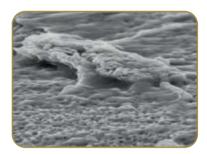
Equivalent to turned surfaces • Minimally rough

Chemically enhanced

Anodized • Bioactive ions

Widely documented Evolution of moderately rough surfaces




Direct and early

response

Oxide, micropores and crystal structures greatly influence bone response

Biochemical bond, bone in-growth and mechanical interlocking

Courtesy of : YT Sul, A. Wennerberg, T. Albreaktsson

Surface chemistry, anodic oxidation and ion incorporation, enhance Osseointegration and compensate for minimal roughness

OSPOL Surface was developed in the Gothenburg University, Sweden, and is documented in several publications. In continual evolution since 2000 and in clinical use for over 15 years, the OSPOL Surface is a modern technology for a rapid and strong bone response. Less prone to bacterial adhesion, it is a pioneer technology for chemical modification of thin anodized, oxidized, ion incorporation of smoother implants surfaces.

Higher [ISQ] for chemicallymodified Surface

OSPOL Surface modification method achieves faster secondary Implant Stability Quotient [ISQ] measured by Resonance Frequency Analysis [RFA] indicating potential for shorter healing periods.

Less bacterial adhesion and biofilm formation

BIOACTIVE

OSPOL Surface is easier to clean than rougher surfaces and its bioactivity reduces biofilm formation. The bacterial adhesion is similar to turned, machined surfaces.

(!) Some conditions, whether combined or not, represent contraindications, limitations and risks, relative and absolute, for the treatment of patients with implants. There are several risk factors in Osseointegration widely described in literature. [ISQ] is a critical factor to clinically monitor Osseointegration. Data from pre-clinical studies.

Stainless Steel BIOSAFETY

Tray options

Compact

Conical Drills

Less friction. Less trauma

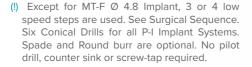
Constant apical conical angle • 3 cutting areas

Corrosion protection


Wear resistance • Diamond Like Carbon

State-of-the-art performance

Special P-I design • Swiss


Exceptional cutting performance

P-I Conical Drills' performance in dense bone, at the highest recommended rotation, without gradual diameter increments and applying constant feeding, present a very low friction coefficient range of 2 to 10 Ncm. Data on file.

Easy, simplified installation

Maximum of 3 low speed steps

Insertion Driver

Handpiece • Manual • Torque Wrench

21 🗐

^(!) The horizontal Implant Insertion Driver's mark is at approximately 3 mm and serves as a Biological Width vertical reference for Implant platform positioning when completely covered by the lowest point of the soft tissue, the gingival margin. For further submersion, verify available prosthetic Component dimensions to address critical and subcritical prosthetic contours. Implant Insertion Driver dots and hexagon are indexed to the Implant's hexagonal index.

• MT-F Implants

Platform Ø	3.3	3.5	3.9	4.6
h				
18		172319	172385	
15	172297	172302	172384	
13	172296	172301	172383	172306
11.5	172295	172300	172382	172305
10	172294	172299	172381	172304
8.5	172293	172298	172380	172303
7		172318	172379	172321
6		172317	172378	172320
		10	TIM	1
	The second	ANA ANA	13	The
		2.75	4.1	
Implant Ø	3.3	3.75	4.1	4.8

Prosthetic Components

Biological Width

Concave or Parallel emergence Healing • Soft Tissue contouring Potential for more soft tissue volume Minimized cortical bone removal for sub-crestal Implants

Parallel Emergence Healing

One Cover Screw

For all Implants and Platforms • MT Interface

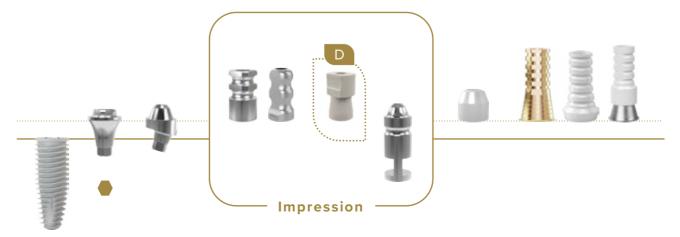
				N	R	W
Divergent	8		h 4.5 3	171199 171198	171202 171201	171205 171204
Divergent	¥		1.5	171197	171200	171203
Parallel	Ĵ.	SELECTION	4.5 3	171190 171189	171193 171192	171196 171195
			1.5	171188	171191	171194

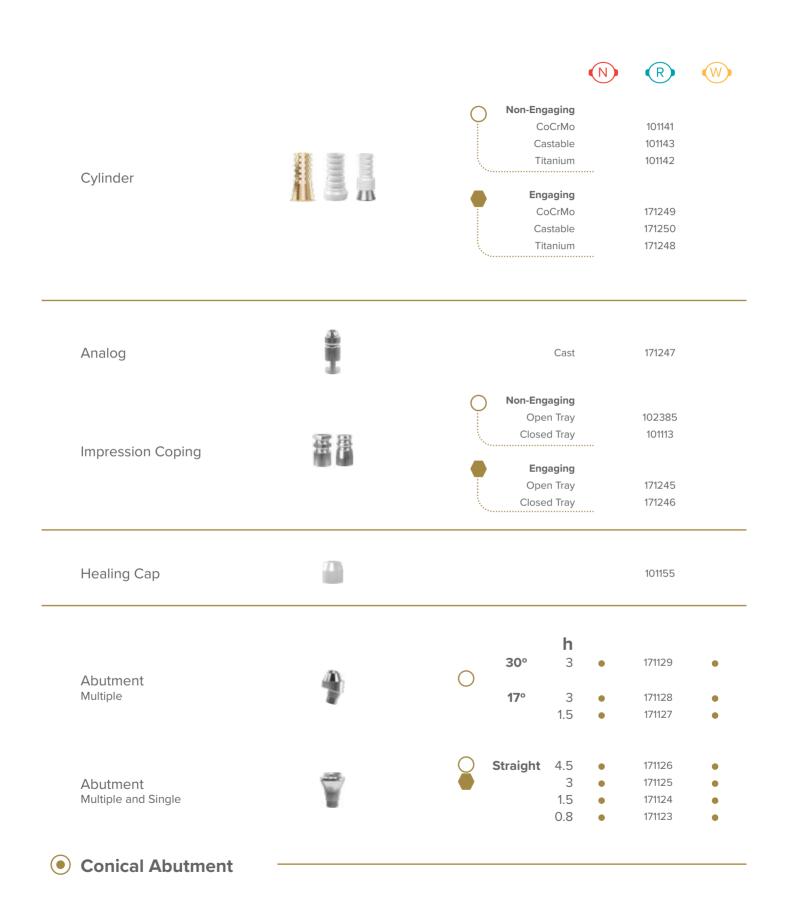
• Healing Abutment

Conical Abutment

Single or multiple, screw-retained prosthesis

Biological Width


Concave emergence • Potential for more soft tissue volume Minimizes cortical bone removal to install Abutment


Single prosthesis

Straight Conical Abutment has double indexation Select engaging components

Universal Ø 4.8 platform

Scan Body for single and multiple units • D DIGITAL Inclined implants technique • "All-on-4"

• Regular Abutment is used.

(!) Conical Abutment prosthetic Platform has Ø 4.8 mm.

(!) Maximum occlusal angulation between two Conical Abutments is 40°.

Abutment Cemented Cylinder

Single or multiple, cement-retained prosthesis

Biological Width

Concave emergence • Potential for more soft tissue volume Minimizes cortical bone removal to install Abutment

Anterior and posterior

Indexed • 6 and 4mm cone heights Single and multiple Castable Cemented Cylinders 🔘 🛑

One-time one-abutment option

Prosthetic procedures over Abutment or Implant Platform

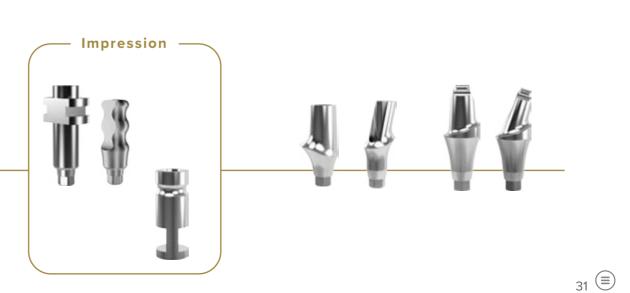
Zero margin Abutment

For limited interproximal spaces "0"

Cylinder		Non-Engaging Castable 6mm (L) Castable 4mm Engaging Castable 6mm (L) Castable 4mm	161414 161464	R 161418 101747 161419 101746	 161423 101977 161424 101976
Analog		6mm (L) 4mm	161410 161462	161415 101745	161420 101975
Impression Coping	10	Closed Tray, 6mm (L) Closed Tray, 4mm	161412 161461	161417 101744	161422 101974
Healing Cap		6mm (L) 4mm	161411 161460	161416 101743	161421 101973
4mm	<u> </u>	h 4.5 3 1.5 0.8	171157 171156 171155 171154	171162 171161 171160 171159	171167 171166 171165 171164
6mm • Long (L)		4.5 3 1.5 0.8	171142 171141 171140 171139	171147 171146 171145 171144	171152 171151 171150 171149
Abutment Cemented	l Cylinder	"O"	171138	171143	171148

Contour & Esthetic Abutments

Single or multiple, cement-retained prosthesis



Increased Biological Width

Concave emergence • Potential for more soft tissue volume Minimizes cortical bone removal to install Abutment

Debuet design		Contour
Robust design		
Preparable • Straight and 17°		
	Esthetic	
Delicate slim profile		*Q.
Preparable • Straight and 15°		
Impression at Implant Platform		
Short and Long Impression Copings		19

Open and Closed Trays

			N	R	W
Contour 17°		h 4.5 3 1.5	171116 171115 171114	171119 171118 171117	171122 171121 171120
Contour Straight	Ĩ.	4.5 3 1.5	171107 171106 171105	171110 171109 171108	171113 171112 171111

• Contour Abutment

		h			
		4.5	171178	171181	٠
Esthetic 15°		3	171177	171180	٠
L'unelle 13		1.5	171176	171179	•
		4.5	171171	171175	•
Esthetic Straight		3	171170	171174	•
Estiletic Straight	The second secon	1.5	171169	171173	٠
	w	0.8	171168	171172	٠

• Esthetic Abutment

Implant	Analog
---------	--------

Impression Coping Implant

† 7

Ì

	٠	171212	•
Open Tray	•	171206	•
Closed Tray	٠	171209	•
Open Tray, Long	•	172418	٠
Closed Tray Long	•	172417	٠

— Implant Impression

Cylinders over Implant

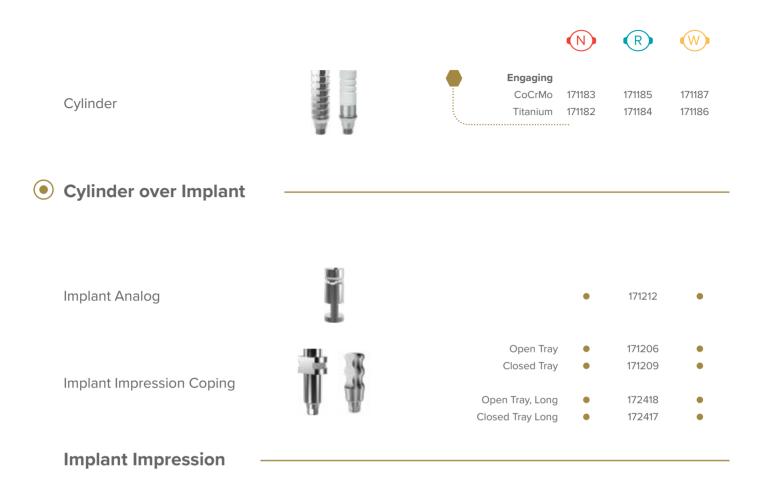
Single or multiple, cement or screw-retained prosthesis

Increased Biological Width

Concave emergence • Potential for more soft tissue volume Minimizes cortical bone removal to install Cylinder

Provisional • Titanium


Flat areas and deep trapezoidal retentions


Definitive • Overcasting

Main body [CoCrMo] and waxing sleeve [POM] with retentions

Impression at Implant Platform

Short and Long Impression Copings Open and Closed Trays

Locator [®] Overdenture prosthesis		Q	N R	
		h		
		4	• 2203	•
		3	• 2202	•
Abutment	T	2	2201	•
	8	1	2200	•

Manufactured by Zest Dental
 Components and instruments not included in the P-I Catalog.
 Regular Abutment, Impression Coping or Analog is used.

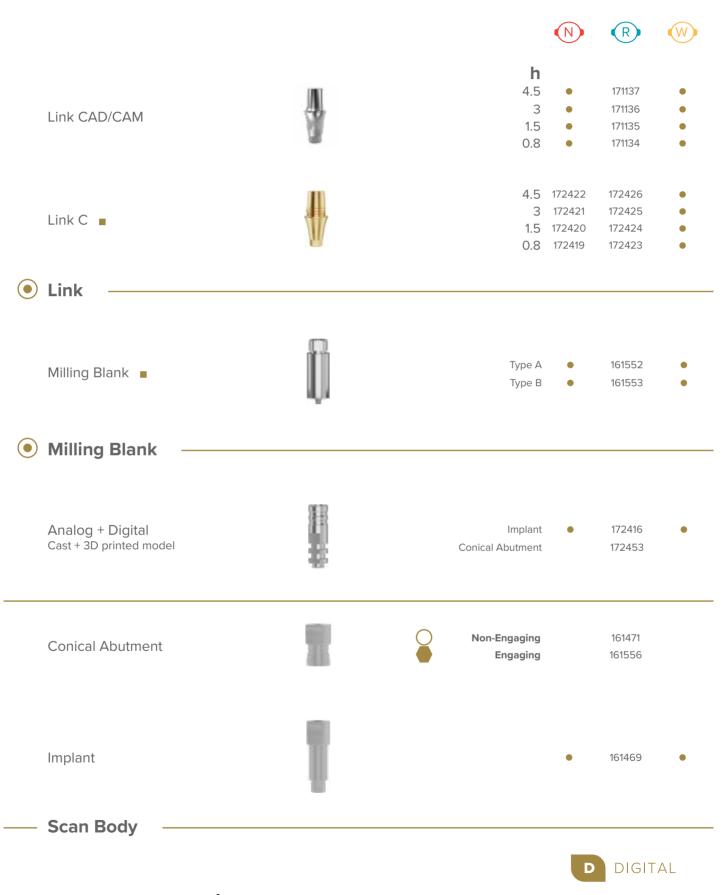
DIGITAL

Manufacturing Prosthetics • 3D Model

Link Milling Blank • Cylinder

Design Libraries

SP


Scan Intraoral • Desk

Scan Body Implant • Conical Abutment

3shape[⊳]

exocad

(!) Libraries are available for upload at www.pibranemark.com and/or from CAD/CAM system. Please check library version and availability.

Manufactured by SIC invent AB
 Link C post has Dentsply Sirona, Cerec dimensions.
 Regular Scan Body, Analog + Digital, Milling Blanks or Links are used.

Kit One for all P-I Implant Systems

width	254 mm
height	40
depth	130

Advanced Stainless Steel 181036

Kit Tray options

w 202 h 67 d 158 Advanced Polymer 181022

(!) Please see Kit Composition at www.pibranemark.com/en/download for additional Kit contents. (!) Reference number for ordering purposes only. Instruments and Tray delivered separately.

Surgical Instruments

— Drill —			
		Ø	
022 0	Initial	2.2	141138
		2.8	141314
0 3.40	Carical	3.4	141148
Ø 3.4 0	Conical	3.8 4.6	141146 141152
		4.8	141315
		3.3	141213
0 3.75 Φ	Dense	3.75	141316
		4.0	141215
		4.8 5.0	141317
Implant Insertion Driver			
		Medium	Long
	All Systems	131139	131140 •
	HEX 3.5	131141	131142
— Tools —			
			40444
	Guide Pin	2.2 2.8 2.8 3.8	131114 131115
		2.2 2.8 C	141535
		2.8 3.8 C	141536
	Drill Extension		131028
	Spade	1.5	141319
0	Round Burr	1.3	141001
	Depth Probe		141440 🔺
/			

Prosthetic Instruments

Driver -Short 131010 Hexagonal Ø 1.2 • Medium 131011 Long 131012 Short 131120 Hexagonal + Medium 131121 Adapter Ø 1.2 Long 131122 Short 131016 Conical Abutment Ø 2.0 Medium 131017 Conical Abutment + Short 131123 Adapter Ø 2.0 Medium 131124 Short 141564 **Retriever MT** 131131 Medium

Torque Wrench

Manufactured by Elos MedTech Pinol A/S . Torque Wrench Kit includes Surgical & Prosthetic Adapters.

- All Components except straight Conical Abutment and Locator®.
- ▲ Optional Instruments not included in the Advanced Kit contents.

(b) Guided Surgery Surgical & Prosthetic precision

3D positioning precision

Fully guided Drills • Angular and axial guidance Increased accuracy for Implant installation and prosthetic position

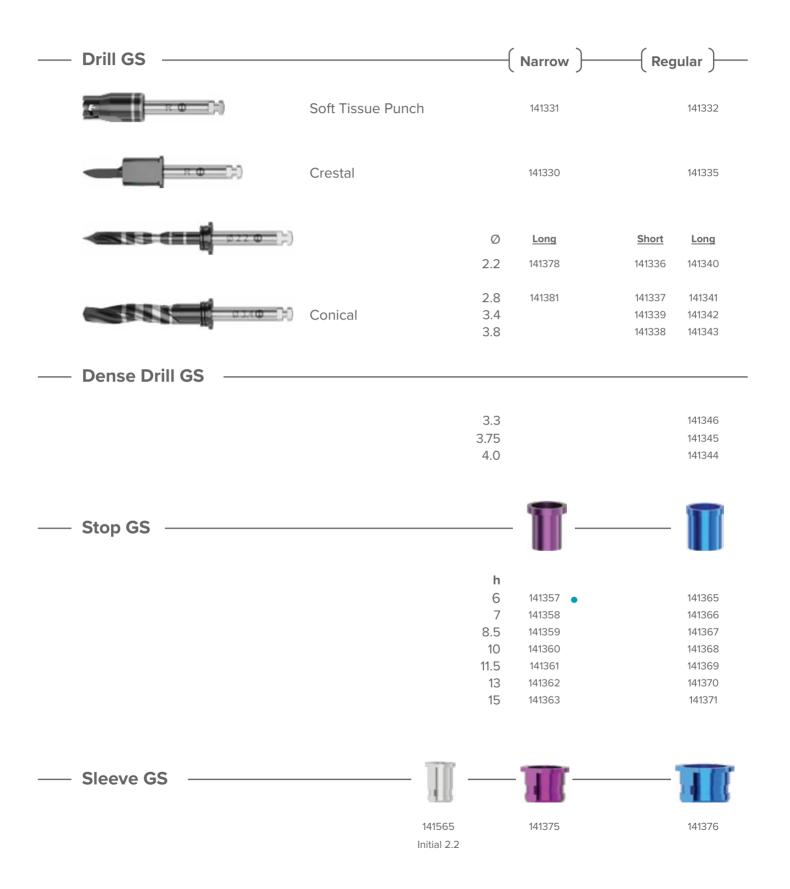
Conventional Surgery

Same Drills and Instruments for both conventional and Guided Surgery

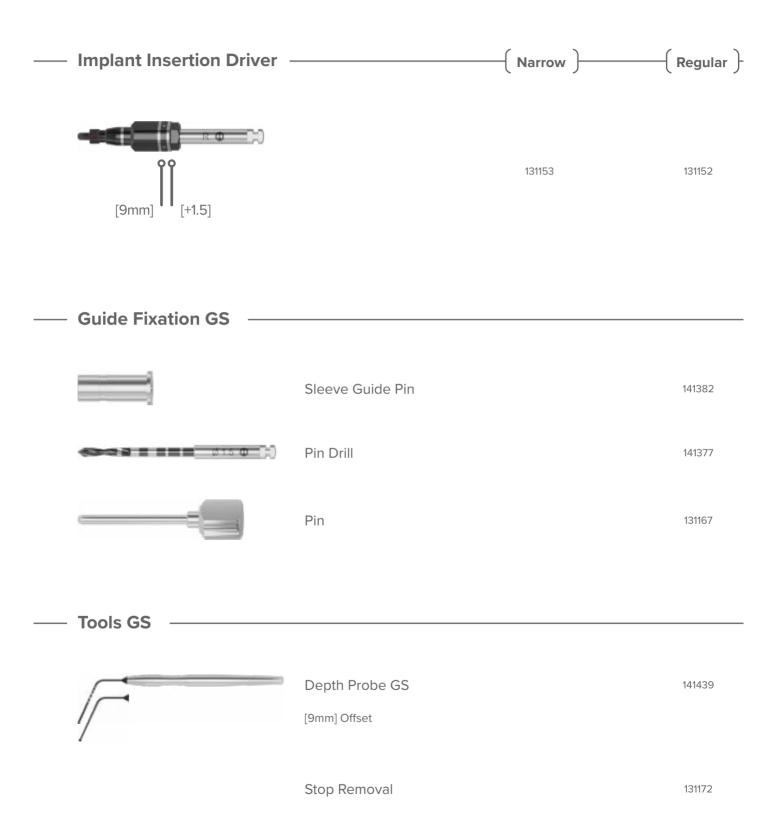
Simplification

Less Instruments [9mm] offset Stops • Stops can be pre-assembled

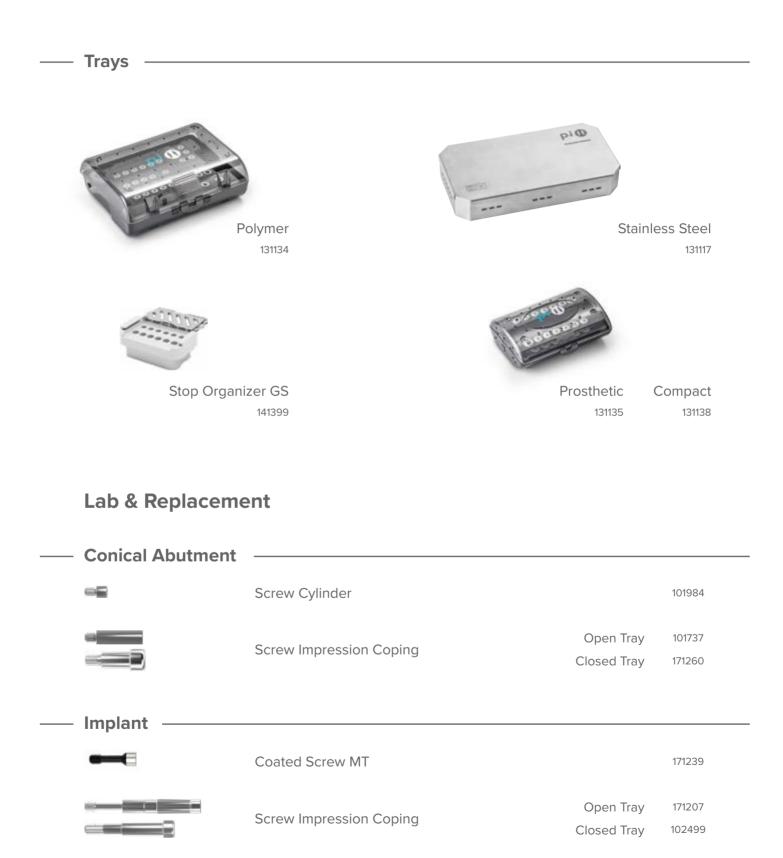
		Drill	Sleeve	Imp	olant
				h	Ø
00 1 111	Î	40 • Long	Narrow	10 • 15	3.3
Į.	h	35.5 • Short	Regular	6 • 10	3.75 • 4.1
Ŵ	\downarrow	40 • Long	Regular	11.5 • 15	3.75 • 4.1



(



42 🗐



Accessories

Resonance Frequency Analysis

Penguin [RFA] Kit includes instrument, charger, MulTipeg driver and user's manual.
 (!) P-I [RFA] pegs are also available from Osstell.

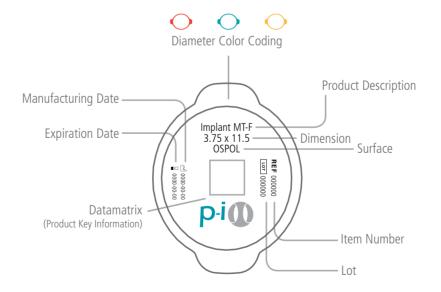
	rpm	600 - 1,200 Lowest possible rpm
Ncm	ITV	≤ 70 Ncm Insertion Torque Value
	Full Length	Prepare at planned full length of Implant position
	In-Out	Coordinated in-and-out movement of Conical Drills
	Irrigation	Constant irrigation to the insertion margin of Conical Drills

(!) Drills are less than 1 mm longer than Drill marks

SURGICAL SEQUENCE

(!) The subsequent Conical Drill, in terms of diameter, should be considered with a drilling depth of 6 mm, in order to not exceed 70 Ncm of insertion torque value. The use of Dense Drills (15 – 50 rpm) can also be considered to lower the insertion torque value.

(b) Guided Surgery Drills consider a [9mm] offset and, when used with Drill stops, allow for limiting the total length of osteotomy with the objective of providing predetermined Drill length and orientation through the surgical guide. Height repositioning for Sleeve and Stop selection required for [+1.5] offset.



Torques	Ncm
MT-F Implants	≤ 70
Abutments	
Cylinders over Implant	25
Links	
Cylinders • Conical Abutment	15
Cover Screw	
Healing Abutments	ts Manual
Impression Copings	Wanua
Scan Bodies	

(!) Recommended Torques. Abutment and Components torques should not exceed the torque obtained at Implant installation. (!) One Prosthetic Driver, except Locator® and straight Conical Abutment.

Developed By P-I Brånemark

MT-F SMART GUIDE-005-ENG-20_02_2023 Copyright © P-I Brânemark 2023 | All rights reserved

pibranemark.com

SIC invent Sweden AB Stora Åvägen 21 43634 Askim, Sweden

